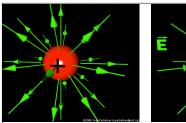


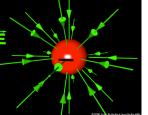
In classical physics, the space surrounding an electric charge, or in the presence of a time-varying magnetic field, has a property called an electric field. This electric field exerts a force on other electrically charged objects. The concept of an electric field was introduced by Michael Faraday.

Would you like to know how quantum physics describes a field?	

Would you like to know how quantum physics describes a field?

(From New Latin *ēlectricus*, "amberlike") is a general term that encompasses a variety of phenomena resulting from the presence and flow of electric charge

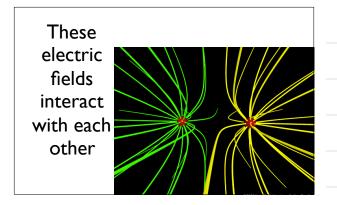


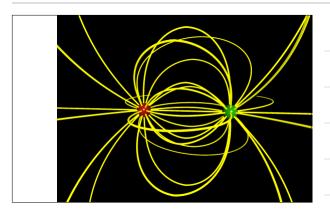

The potential between the two lines is 500kV, that's half a megavolt! At these potentials the air molecules get ionized, becoming plasma, the air becomes a conductor transfering electricity creating an impressive electric discharge. The video was taken in BC Canada.

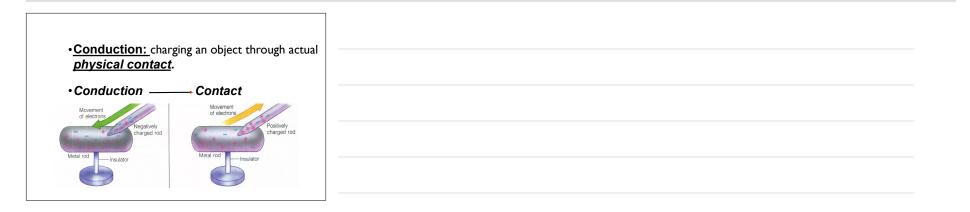
Now Lets Talk About Types of Electricity	
Static Electricity Electric Current	

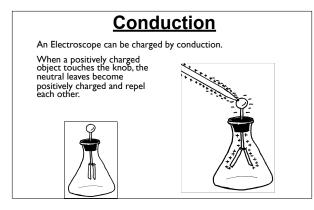
Static Electricity	The word static means "not moving". So what to you think static electricity is?
	It is a buildup of electric charge that stays where it is once it is put there.
Liphining Cipe Copying 201 Sump D. Banddow All Hopte Research	Lightning is a discharge of electric charge.

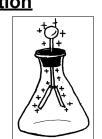
Field Around a Point (or Spherical) Charge As long as the point, or sphere, is a conductor the charge can spread uniformly. Field lines around it are normal to the surface and electric field why are they ourward?



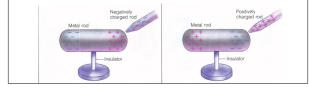



They are directed radially out from a positive charge

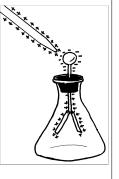

And radially inward for a negative charge



Conduction


This leaves the electroscope with a net positive charge (same as the rod that charged it) because a lot of the electrons have been removed!

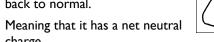
Methods of Charging


•Induction: charging an object without physical contact.

Induction _____ Indirect charging

Induction

- The negative electrons are attracted to the positively charged rod
- The leaves temporarily become positively charged, like the rod

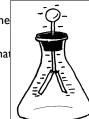


UU

Induction

After taking the rod away, since there was no actual transfer of charge, the electroscope goes back to normal.

charge.



Induction with a Ground

After taking the ground and rod away, all the extra electrons get evenly distributed throughout the electroscope.

You are left with a net charge that is opposite that of the charged rod.

Friction, 3 rd Method of Charging	
Rubbing a balloon with a cloth transfers electrons from the cloth to the balloon.	
The action of rubbing is what causes the electrons to transfer.	
The cloth tends to hold the electrons more loosely than the balloon. So the cloth gives the balloon electrons. The balloon gets a charge!	

What Do You Call a Material That Protects You From an Electric Charge?

INSULATOR: Does Not Conduct Electric Charge Well. Does Not Allow Electrons to Flow Freely. Rubber, Plastic, Glass, Wood.

What kind of things conduct electricity well?	
Conductor: Any Substance That Allows Electrons to Move Freely	

What Is This?

Who saw Indiana Jones?

The biblical powers of the Arc of the Covenant can be explained by static electricity.

Conservation of Charge

In a closed system where electric charge carriers can not enter or leave, the total net charge remains constant.

But the distribution of the charges can change.

The Coulomb

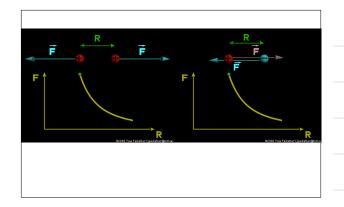
One coulomb equals 6.25×10¹⁸ elementary charges

The charge on one electron equals -1.6×10^{-19} coulomb. (-e)

The charge on one proton equals 1.6x10⁻¹⁹ coulomb. (+e)

•Net charge on an object must be an integral multiple of e!

Example Which charge is a valid electrical charge for an object?
Which charge is a valid electrical charge for an object?
a)8x10 ⁻²⁰ C b)5.32x10 ⁻¹⁸ C c)1.1x10 ⁻¹⁵ C d)1.52x10 ⁻¹⁷ C
b)5.32x10 ⁻¹⁸ C
c)1.1×10 ⁻¹⁵ C
d)1.52x10 ⁻¹⁷ C
e)0


0 is a neutral object 1.52x10⁻¹⁷ C/1.6x10-19C/e = 95 e That's 95 protons!

