

Work (a scalar)

- In physics, work is done when a force is applied through a distance.
- $W=F \cdot d$ =force \cdot displacement
- The result of work is motion
- Unit of measure is the joule.
-If you pick up a 3 N rock a distance of 2 meters, how much work have you done?
-If you push a wall with a force of IOON how much work have you done?

$8^{1 j^{15 N}}$


```
% %
```

- Is there actually work being done on the left?
- Yes. But not by the 15 N force used to hold it up. If you knew the coeff. of friction between the box and hands then you could calculate the force used to overcome friction that is in the direction of the motion.

A 58 kg skier is coasting down a 25° slope. A kinetic frictional force $\mathrm{F}_{\mathrm{k}}=$
70 N opposes her motion. If she travels a distance down the slope of 57 70 N opposes her motion. If she travels a distance down the slope of 57
meters, determine the total work done by all forces acting on her

How much work does gravity do on

A Conservative Force

- A force is conservative when it does no net work on an object moving around a closed path. - Work is independent of path

Conservative Nonconservative
 Air resistanc
-Power is the rate at which work is done

- $\mathrm{P}=\mathrm{W} / \mathrm{t}$
-So the raster 8 ou do work the mo TR needed.
-SI unit of measure is the watt.

Calculate the Power

- A set of pulleys is used to lift a piano weighing I000N.

It is lifted 6 meters in 30 seconds. How much work wa put into it and how much power was used?

- W=Fxd= $1000 \mathrm{~N} \times 6 \mathrm{~m}$
- $W=6000 \mathrm{~J}$
- $\mathrm{P}=\mathrm{W} / \mathrm{t}=6000 \mathrm{~J} / 30 \mathrm{~s}$
$\bullet P=200 \mathrm{~W}$
with it.
CDefined as the ability to do work. "WORK = $\triangle E N E R G Y '$

The SI unit of measurement for energy is the joule (J).

Gravitational Potential Energy

- The potential energy "stored energy" in an object due to its height off the ground.
- Work was done against the force of gravity (weight), through a distance (height) to lift an object.
- The work done (W) is equivalent to the

Gravitational Potential Energy (GPE) acquired
by the object.

Kinetic Energy (KE)

- Is the energy due to motion.
- A moving object has the ability to do work on another object. - It is a scalar quantity

Kinetic Energy (K)

Using W $=\mathrm{F} \cdot \mathrm{d}$ and Newton's $2^{\text {nd }}$ Law, $\mathrm{F}=\mathrm{m} \cdot \mathrm{a}$
The work done by a force
to accelerate a mass is
$W=F d$ to accelerate a mass is

Conservation of Mechanical

 Energy- The total mechanical energy ($\mathrm{E}=\mathrm{K}+\mathrm{U}$) of an object remains constant as the object moves, provided the net work done by external nonconservative forces is ZERO.

A 0.5 Kg block slides down a frictionless surface between A and B.
Frictional forces begin at point B and bring it to rest at point C. If
Frictional forces begin at point B and bring it to rest at point C . If
$\mathrm{K}_{\mathrm{A}}=30 \mathrm{~J}$ what is the kinetic energy at B ? How much work does
the frictional forces do between BC ?

If the distance from B to C is 10 m , find:
I.The force of friction
2. The acceleration
3. The time it takes friction to stop the box

